Apocalypse Forestalled: Why All the World’s Fisheries Aren’t Collapsing
By Ray Hilborn, Professor, Aquatic and Fishery Sciences, University of Washington
If you have paid any attention to the conservation literature or science journalism over the last five years, you likely have gotten the impression that our oceans are so poorly managed that they soon will be empty of fish — unless governments order drastic curtailment of current fishing practices, including the establishment of huge no-take zones across great swaths of the oceans.
To be fair, there are some places where such severe declines may be true. A more balanced diagnosis, however, tells a different story — one that still requires changes in some fishing practices, but that is far from alarmist. But this balanced diagnosis is being almost wholly ignored in favor of an apocalyptic rhetoric that obscures the true issues fisheries face as well as the correct cures for those problems.
Where the Apocalyptic Rhetoric Comes From
To get the storyline correct, it is important to go back to the sources of the apocalyptic rhetoric. In 2006, a paper was published by Boris Worm in Science (Worm et al. 2006) that received enormous press coverage. It argued that, if current trends continued, all fish stocks would collapse by 2048. Worm and his coauthors concluded their paper with the following sentence: “Our analyses suggest that business as usual would foreshadow serious threats to global food security, coastal water quality, and ecosystem stability, affecting current and future generations.”
Others joined in, chief among them Daniel Pauly, who rang and continues to ring the apocalyptic note. “There are basically two alternatives for fisheries science and management: one is obviously continuing with business as usual…,” wrote Pauly in 2009 (Pauly 2009a). “This would lead, in addition to further depletion of biodiversity, to intensification of ‘fishing down marine food webs,’ which ultimately involves the transformation of marine ecosystems into dead zones.”
It might surprise you to learn Pauly’s views are not universally held among scientists. Indeed, these papers exposed a deep divide in the marine science community over the state of fish stocks and the success of existing fisheries management approaches. Numerous critiques of the apocalyptic stance were published after the 2006 paper, suggesting that Worm et al. had greatly exaggerated the failings of “business as usual.” For instance, Steve Murawski, director of scientific programs and chief science advisor, defended the U.S. fisheries management system and pointed out that the proportion of stocks overfished in the U.S. was declining, not increasing (Murawski et al. 2007).
The Real Question: Are Current Fishing Practices Decimating Stocks…or Rebuilding Them?
No one disagrees on our goals for the world’s fisheries stocks — we need higher fish abundances. The arguments are largely about where we are now and how we will get to higher fish abundance and lower fishing pressure. Are current fisheries management systems working to decimate fish stocks…or rebuild them? Do we need large areas of the oceans closed to fishing to assure sustainable seafood supply? Daniel Pauly says yes to the latter question: “This transformation,” he writes, “would also require extensive use of ocean zoning and spatial closures, including no-take marine protected areas (MPAs). Indeed, MPAs must be at the core of any scheme intending to put fisheries on an ecologically sustainable basis” (Pauly 2009a).
In an attempt to resolve this dispute, Boris Worm and I several years ago organized a set of four meetings, sponsored by the National Center for Ecological Analysis and Synthesis (NCEAS), in which we assembled a database on abundance as measured by fisheries agencies and research surveys. Participants included several of the authors of the 2006 paper as well as several people from national fisheries management agencies.
The results were published in Science in 2009 (Worm et al. 2009), and showed that, while the majority of stocks were still below target levels, fishing pressure had been reduced in most ecosystems (for which we had data) to below the point that would assure long-term maximum sustainable yield of fish from those ecosystems.
About 30 percent of the stocks would currently be classified as overfished — but, generally, fishing pressure has been reduced enough that all but 17 percent of stocks would be expected to recover to above overfished thresholds if current fishing pressure continues. In the United States, there was clear evidence for the rebuilding of marine ecosystems and stock biomass. The idea that 70 percent of the world’s fish stocks are overfished or collapsed and that the rate of overfishing is accelerating (Pauly 2007) was shown by Worm et al. (2009) and FAO (2009) to be untrue.
The Science paper coming out of the NCEAS group also showed that the success in reducing fishing pressure had been achieved by a broad range of traditional fisheries management tools — including catch-and-effort limitation, gear restrictions and temporary closed areas. Marine protected areas were an insignificant factor in the success achieved.
The database generated by the NCEAS group and subsequent analysis has shown that many of the assumptions fueling the standard apocalyptic scenarios painted by the gloom-and-doom proponents are untrue: